Навыки, недоступные роботам

Что делать людям, чтобы роботы не лишили их работы
05.11.2019
Стивен Косслин


Рисунок: Варвара Гранкова

По оценкам недавнего исследования, проведенного компанией Forrester, только в этом году 10% рабочих мест в США будут автоматизированы. Другое исследование, проведенное компанией McKinsey, показывает, что в течение ближайших 10 лет будет автоматизировано около половины всех рабочих мест в США.

Машины займутся повторяющейся и монотонной работой, такой как расшифровка рентгеновских снимков (роль рентгенологов может вскоре значительно сократиться), вождение грузовиков и обслуживание складских помещений. Много было написано о том, какого рода работа исчезнет, однако существует еще одна не столь подробно изученная сторона проблемы: какие задачи будут выполнять машины в тех специальностях, которые уцелеют.

Рассмотрим работу врача-терапевта. Понятно, что диагностику болезней машины скоро будут выполнять лучше, чем люди (если уже не выполняют). Машинное обучение удивительно эффективно при наличии наборов данных для обучения и тестирования, что как раз применимо к здравоохранению. Однако варианты лечения нужно обсудить с пациентом и его семьей - эта функция вряд ли будет автоматизирована в обозримом будущем.

Теперь представим совершенно другую работу - бариста. В Сан-Франциско Cafe X заменило всех сотрудников роботами-манипуляторами, которые за приготовлением горячих напитков развлекают посетителей своими забавными жестами. Однако даже в Cafe X работает живой человек, который показывает клиентам, как пользоваться роботами для заказа напитков, и решает проблемы, возникающие у автоматических бариста.

Теперь сравним работу бариста и бармена. Люди часто заводят с барменом разговор. Для этой работы требуется гораздо больше, чем умение смешивать напитки. Как и в случае врача, эту работу легко разделить на две составляющие: повторяющаяся и монотонная (смешивание и подача напитков) и более интерактивная, непредсказуемая, предполагающая умение слушать клиентов и говорить с ними.

Если оценить характеристики многочисленных специальностей и профессий, можно выделить два типа нетривиальных задач, которые наиболее распространены и с трудом поддаются автоматизации.

1. Работа, связанная с эмоциями. Эмоции играют важную роль в человеческих коммуникациях (вспомните врача, разговаривающего с семьей, или бармена, взаимодействующего с клиентами). Они участвуют буквально во всех формах невербальных коммуникаций и эмпатии. Но более того, они помогают ранжировать действия по важности - например, решать, чем заняться прямо сейчас, а что отложить на вечер. Эмоции не только отличаются сложностью и нюансами, но и связаны со множеством процессов принятия решений. Работа эмоций плохо поддается научному пониманию (хотя в этой области наблюдается прогресс), и ее трудно встроить в автоматизированную систему.

2. Контекст. Люди могут с легкостью учитывать контекст при принятии решений или взаимодействии с другими людьми. Контекст особенно интересен, так как имеет множество вариантов, например, каждый выпуск новостей меняет контекст (широкий или узкий), в котором мы действуем. Кроме того, изменения контекста (например, победа независимого кандидата на президентских выборах) могут не только повлиять на взаимосвязи между факторами, но и добавить новые факторы и принципиальным образом переиначить их расклад. Это проблема для машинного обучения, работающего на наборах данных, которые по определению были созданы раньше, в другом контексте. Таким образом, принятие во внимание контекста (что без труда может сделать хороший бармен) представляет проблему для машины.

Наши способности управлять и руководствоваться эмоциями и учитывать влияние контекста очень важны для критического мышления, творческого решения проблем, эффективных коммуникаций, адаптивного обучения и здравого смысла. Очень сложно программировать машины, чтобы они воспроизводили подобные человеческие знания и навыки, и пока не ясно, когда предпринимаемые сегодня первые попытки это сделать принесут результат (и принесут ли вообще).

И на самом деле именно эти навыки постоянно требуются от кандидатов на различные должности в компаниях разных отраслей. Например, в одном из опросов 93% работодателей сообщили, что «способность кандидата критически мыслить, четко излагать и решать сложные задачи важнее, чем предмет, на котором он специализировался в университете». Кроме того, компании ищут кандидатов, обладающих такими навыками, как способность адаптивно учиться, принимать разумные решения, сотрудничать и ладить с другими. Со всем этим отлично справляется человек, но это будет сложно автоматизировать.

Все это означает, что образовательные системы должны концентрироваться не просто на способах взаимодействия людей и технологий (например, обучении студентов программированию), но и на том, что технологии не смогут освоить в ближайшем будущем. Это новый подход к характеристике природы социально-психологических навыков (soft skills): их сложнее всего понять и систематизировать и они дают людям - и будут продолжать давать - преимущество перед роботами.

Источник: Ведомости

Читайте другие наши материалы